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Planned expenditures on school construction will generate direct and indirect economic impacts 
for New Jersey in the form of employment, income, gross domestic product, and state and local 
tax revenues.  

These impacts were estimated using the state-of-the-art R/ECON™ Input-Output Model at the 
Center for Urban Policy Research at the Bloustein School of Planning and Public Policy. The 
R/ECON™ model estimates both the direct economic effects of the initial expenditures (in terms 
of jobs and income) and the indirect (or multiplier) effects (in additional jobs and income) of the 
subsequent economic activity that occurs following the initial expenditures. The model also 
estimates the tax revenues generated by the combined direct and indirect new economic activity 
caused by the initial spending. 

Summary of Planned School Construction 
 
New Jersey estimates that total additional school construction spending will total $5.4 billion in 
current dollars over the 5-year period from August 2008 to June 2013.  
 
Total School Construction Investment Impacts 
 
In all, over the course of the 5-year period, these $5.4 billion in planned investments are 
estimated to generate as much as: 

• A total of 46,785 job-years or an average of 9,357 job-years annually,1 
• $2.5 billion in income, 
• $3.3 billion in GDP, 
• $369 million in federal tax revenues, 
• $72 million in state tax revenues, and 
• $87 million in local tax revenues.    

 
Table 1. 

Annual Impacts 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
1 Note that employment impacts are expressed in “job-years.” One job-year is equal to one full-time job lasting one 
year. Thus, the job-year total shown for each year represents the total jobs either directly or indirectly generated by 
the project in that year.   

Employment Income* GDP* State Local
Year ($000) Share (Job-Years) ($000) ($000) ($000) ($000)
Aug 2008 - June 2009 1,802,310   33.4 15,615 845,413 1,101,083 24,189 28,917

July 2009 - June 2010 1,904,058   35.3 16,497 893,140 1,163,243 25,554 30,549

July 2010 - June 2011 1,396,862   25.9 12,102 655,229 853,383 18,747 22,412

July 2011 - June 2012 206,708      3.8 1,791 96,961 126,284 2,774 3,316

July 2012 - June 2013 90,062        1.7 780 42,245 55,021 1,209 1,445

Total 5,400,000 100.0 46,785 2,532,990 3,299,014 72,473 86,639
Average 1,080,000 9,357 506,598 659,803 14,495 17,328

Expenditures*
Taxes*
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Of the total employment estimated over the period, approximately 77% is estimated to consist of 
direct job-years, while the remaining 23% is generated indirectly via the multiplier effects of the 
initial expenditures. The employment multiplier is approximately 1.297. Approximately 57.3% 
of the total job-years will be generated in the construction industry, with an additional 8.6% in 
various service industries, 22.8% in the manufacturing industry, and 6.5% in the retail sector.   
 
The spending and, hence, number of jobs created peaks in the year starting July 2009 and ending 
June 2010. Of course, this is also when the income, GDP, and tax impacts also crest. In the year 
beginning August 2008 and ending in June 2009, the planned investments will generate 15,615 
jobs-years. 
 
The average income per job-year generated by the investment total is $54,140. This amount is 
about the same as the state’s average annual pay rate. 
 
Investments Per Million Dollars of Initial Investment 
 
Table 2 displays the effects of $1 million of spending (in 2008 dollars) of school construction 
projects as effected during the modeling process. The table supplies the state with a means of 
estimating any generic project for the project types listed. 
 

Table 2. 
Investments Per Million Dollars of Initial Investment 

 
 
 
 
 
 
 

Investment 
Component

Employment (job-
years) Income ($) State Local

School 
Construction 8.7 469,072 13,421 16,044 610,929

Gross State 
Product ($)

Taxes ($)
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Appendix A:  
Input-Output Analysis— 

Technical Description and Application 
 
This appendix discusses the history and application of input-output analysis and details the input-
output model, called the R/Econ™ I-O model, developed by Rutgers University. This model 
offers significant advantages in detailing the total economic effects of an activity (such as 
historic rehabilitation and heritage tourism), including multiplier effects. 
 
Estimating Multipliers 
 
The fundamental issue determining the size of the multiplier effect is the “openness” of regional 
economies. Regions that are more “open” are those that import their required inputs from other 
regions. Imports can be thought of as substitutes for local production. Thus, the more a region 
depends on imported goods and services instead of its own production, the more economic 
activity leaks away from the local economy. Businesspeople noted this phenomenon and formed 
local chambers of commerce with the explicit goal of stopping such leakage by instituting a “buy 
local” policy among their membership. In addition, during the 1970s, as an import invasion was 
under way, businessmen and union leaders announced a “buy American” policy in the hope of 
regaining ground lost to international economic competition. Therefore, one of the main goals of 
regional economic multiplier research has been to discover better ways to estimate the leakage of 
purchases out of a region or to determine the region’s level of self-sufficiency. 
 
The earliest attempts to systematize the procedure for estimating multiplier effects used the 
economic base model, still in use in many econometric models today. This approach assumes 
that all economic activities in a region can be divided into two categories: “basic” activities that 
produce exclusively for export, and region-serving or “local” activities that produce strictly for 
internal regional consumption. Since this approach is simpler but similar to the approach used by 
regional input-output analysis, let us explain briefly how multiplier effects are estimated using 
the economic base approach. If we let x be export employment, l be local employment, and t be 
total employment, then 

t = x + l 
For simplification, we create the ratio a as 

a = l/t 
 

so that       l = at 
 
then substituting into the first equation, we obtain   
 

t = x + at 
 

By bringing all of the terms with t to one side of the equation, we get  
 

t - at = x or t (1-a) = x 
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Solving for t, we get     t  = x/(1-a) 
 
Thus, if we know the amount of export-oriented employment, x, and the ratio of local to total 
employment, a, we can readily calculate total employment by applying the economic base 
multiplier, 1/(1-a), which is embedded in the above formula. Thus, if 40 percent of all regional 
employment is used to produce exports, the regional multiplier would be 2.5. The assumption 
behind this multiplier is that all remaining regional employment is required to support the export 
employment. Thus, the 2.5 can be decomposed into two parts the direct effect of the exports, 
which is always 1.0, and the indirect and induced effects, which is the remainder—in this case 
1.5. Hence, the multiplier can be read as telling us that for each export-oriented job another 1.5 
jobs are needed to support it. 
 
This notion of the multiplier has been extended so that x is understood to represent an economic 
change demanded by an organization or institution outside of an economy—so-called final 
demand. Such changes can be those effected by government, households, or even by an outside 
firm. Changes in the economy can therefore be calculated by a minor alteration in the multiplier 
formula: 

Δt  = Δx/(1-a) 
 

The high level of industry aggregation and the rigidity of the economic assumptions that permit 
the application of the economic base multiplier have caused this approach to be subject to 
extensive criticism. Most of the discussion has focused on the estimation of the parameter a. 
Estimating this parameter requires that one be able to distinguish those parts of the economy that 
produce for local consumption from those that do not. Indeed, virtually all industries, even 
services, sell to customers both inside and outside the region. As a result, regional economists 
devised an approach by which to measure the degree to which each industry is involved in the 
nonbase activities of the region, better known as the industry’s regional purchase coefficient. 
Thus, they expanded the above formulations by calculating for each i industry 
 

li = r idi 
 

and         xi = ti - r idi 
 
given that di is the total regional demand for industry i’s product. Given the above formulae and 
data on regional demands by industry, one can calculate an accurate traditional aggregate 
economic base parameter by the following: 
 

a = l/t = Σlii/Σti 
 

Although accurate, this approach only facilitates the calculation of an aggregate multiplier for the 
entire region. That is, we cannot determine from this approach what the effects are on the various 
sectors of an economy. This is despite the fact that one must painstakingly calculate the regional 
demand as well as the degree to which they each industry is involved in nonbase activity in the 
region. 
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As a result, a different approach to multiplier estimation that takes advantage of the detailed 
demand and trade data was developed. This approach is called input-output analysis. 
 
Regional Input-Output Analysis: A Brief History 
 
The basic framework for input-output analysis originated nearly 250 years ago when François 
Quesenay published Tableau Economique in 1758. Quesenay’s “tableau” graphically and 
numerically portrayed the relationships between sales and purchases of the various industries of 
an economy. More than a century later, his description was adapted by Leon Walras, who 
advanced input-output modeling by providing a concise theoretical formulation of an economic 
system (including consumer purchases and the economic representation of “technology”). 
 
It was not until the twentieth century, however, that economists advanced and tested Walras’ 
work. Wassily Leontief greatly simplified Walras’s theoretical formulation by applying the 
Nobel prize-winning assumptions that both technology and trading patterns were fixed over time. 
These two assumptions meant that the pattern of flows among industries in an area could be 
considered stable. These assumptions permitted Walras’s formulation to use data from a single 
time period, which generated a great reduction in data requirements. 
 
Although Leontief won the Nobel Prize in 1973, he first used his approach in 1936 when he 
developed a model of the 1919 and 1929 U.S. economies to estimate the effects of the end of 
World War I on national employment. Recognition of his work in terms of its wider acceptance 
and use meant development of a standardized procedure for compiling the requisite data (today’s 
national economic census of industries) and enhanced capability for calculations (i.e., the 
computer). 
 
The federal government immediately recognized the importance of Leontief’s development and 
has been publishing input-output tables of the U.S. economy since 1939. The most recently 
published tables are those for 1987. Other nations followed suit. Indeed, the United Nations 
maintains a bank of tables from most member nations with a uniform accounting scheme. 
 
Framework 
 
Input-output modeling focuses on the interrelationships of sales and purchases among sectors of 
the economy. Input-output is best understood through its most basic form, the interindustry 
transactions table or matrix. In this table (see Figure 1 for an example), the column industries are 
consuming sectors (or markets) and the row industries are producing sectors. The content of a 
matrix cell is the value of shipments that the row industry delivers to the column industry. 
Conversely, it is the value of shipments that the column industry receives from the row industry. 
Hence, the interindustry transactions table is a detailed accounting of the disposition of the value 
of shipments in an economy. Indeed, the detailed accounting of the interindustry transactions at 
the national level is performed not so much to facilitate calculation of national economic impacts 
as it is to back out an estimate of the nation’s gross domestic product. 
 



Page 6. 

Figure 1 
Interindustry Transactions Matrix (Values) 

 
 
 

 
Agriculture 

 
Manufacturing 

 
Services 

 
Other 

Final 
Demand 

Total 
Output 

Agriculture 10 65 10 5 10 $100 
Manufacturing 40 25 35 75 25 $200 
Services 15 5 5 5 90 $120 
Other 15 10 50 50 100 $225 
Value Added 20 95 20 90   
Total Input 100 200 120 225   

 
For example, in Figure 1, agriculture, as a producing industry sector, is depicted as selling $65 
million of goods to manufacturing. Conversely, the table depicts that the manufacturing industry 
purchased $65 million of agricultural production. The sum across columns of the interindustry 
transaction matrix is called the intermediate outputs vector. The sum across rows is called the 
intermediate inputs vector. 
 
A single final demand column is also included in Figure 1. Final demand, which is outside the 
square interindustry matrix, includes imports, exports, government purchases, changes in 
inventory, private investment, and sometimes household purchases.  
 
The value-added row, which is also outside the square interindustry matrix, includes wages and 
salaries, profit-type income, interest, dividends, rents, royalties, capital consumption allowances, 
and taxes. It is called value added because it is the difference between the total value of the 
industry’s production and the value of the goods and nonlabor services that it requires to 
produce. Thus, it is the value that an industry adds to the goods and services it uses as inputs in 
order to produce output.  
 
The value-added row measures each industry’s contribution to wealth accumulation. In a 
national model, therefore, its sum is better known as the gross domestic product (GDP). At the 
state level, this is known as the gross state product—a series produced by the U.S. Bureau of 
Economic Analysis and published in the Regional Economic Information System. Below the 
state level, it is known simply as the regional equivalent of the GDP—the gross regional product. 
 
Input-output economic impact modelers now tend to include the household industry within the 
square interindustry matrix. In this case, the “consuming industry” is the household itself. Its 
spending is extracted from the final demand column and is appended as a separate column in the 
interindustry matrix. To maintain a balance, the income of households must be appended as a 
row. The main income of households is labor income, which is extracted from the value-added 
row. Modelers tend not to include other sources of household income in the household industry’s 
row. This is not because such income is not attributed to households but rather because much of 
this other income derives from sources outside of the economy that is being modeled. 
 
The next step in producing input-output multipliers is to calculate the direct requirements matrix, 
which is also called the technology matrix. The calculations are based entirely on data from 
Figure 1. As shown in Figure 2, the values of the cells in the direct requirements matrix are 
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derived by dividing each cell in a column of Figure 1, the interindustry transactions matrix, by its 
column total. For example, the cell for manufacturing’s purchases from agriculture is 65/200 = 
.33. Each cell in a column of the direct requirements matrix shows how many cents of each 
producing industry’s goods and/or services are required to produce one dollar of the consuming 
industry’s production and are called technical coefficients. The use of the terms “technology” 
and “technical” derive from the fact that a column of this matrix represents a recipe for a unit of 
an industry’s production. It, therefore, shows the needs of each industry’s production process or 
“technology.” 
 

Figure 2 
Direct Requirements Matrix 

 
 Agriculture Manufacturing Services Other 

Agriculture .10 .33 .08 .02 
Manufacturing .40 .13 .29 .33 
Services .15 .03 .04 .02 
Other .15 .05 .42 .22 

 
Next in the process of producing input-output multipliers, the Leontief Inverse is calculated. To 
explain what the Leontief Inverse is, let us temporarily turn to equations. Now, from Figure 1 we 
know that the sum across both the rows of the square interindustry transactions matrix (Z) and 
the final demand vector (y) is equal to vector of production by industry (x). That is,  
 

x = Zi + y 
 

where i is a summation vector of ones. Now, we calculate the direct requirements matrix (A) by 
dividing the interindustry transactions matrix by the production vector or 
 

A = ZX-1 
 

where X-1 is a square matrix with inverse of each element in the vector x on the diagonal and the 
rest of the elements equal to zero. Rearranging the above equation yields 
 

Z = AX 
 

where X is a square matrix with the elements of the vector x on the diagonal and zeros 
elsewhere. Thus,  
 

x = (AX)i + y 
 

or, alternatively, 
 

x = Ax + y 
 

solving this equation for x yields 
x =   (I-A)-1                y 
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Total  = Total      *     Final  

     Output   Requirements    Demand 
 

The Leontief Inverse is the matrix (I-A)-1. It portrays the relationships between final demand 
and production. This set of relationships is exactly what is needed to identify the economic 
impacts of an event external to an economy. 
 
Because it does translate the direct economic effects of an event into the total economic effects 
on the modeled economy, the Leontief Inverse is also called the total requirements matrix. The 
total requirements matrix resulting from the direct requirements matrix in the example is shown 
in Figure 3. 

 
Figure 3 

Total Requirements Matrix 
 

 Agriculture Manufacturing Services Other 
Agriculture 1.5 .6 .4 .3 
Manufacturing 1.0 1.6 .9 .7 
Services .3 .1 1.2 .1 
Other .5 .3 .8 1.4 
Industry Multipliers  .33 2.6 3.3 2.5 

 
In the direct or technical requirements matrix in Figure 2, the technical coefficient for the 
manufacturing sector’s purchase from the agricultural sector was .33, indicating the 33 cents of 
agricultural products must be directly purchased to produce a dollar’s worth of manufacturing 
products. The same “cell” in Figure 3 has a value of .6. This indicates that for every dollar’s 
worth of product that manufacturing ships out of the economy (i.e., to the government or for 
export), agriculture will end up increasing its production by 60 cents. The sum of each column in 
the total requirements matrix is the output multiplier for that industry. 
 
Multipliers 
 
A multiplier is defined as the system of economic transactions that follow a disturbance in an 
economy. Any economic disturbance affects an economy in the same way as does a drop of 
water in a still pond. It creates a large primary “ripple” by causing a direct change in the 
purchasing patterns of affected firms and institutions. The suppliers of the affected firms and 
institutions must change their purchasing patterns to meet the demands placed upon them by the 
firms originally affected by the economic disturbance, thereby creating a smaller secondary 
“ripple.” In turn, those who meet the needs of the suppliers must change their purchasing 
patterns to meet the demands placed upon them by the suppliers of the original firms, and so on; 
thus, a number of subsequent “ripples” are created in the economy.  
 
The multiplier effect has three components—direct, indirect, and induced effects. Because of the 
pond analogy, it is also sometimes referred to as the ripple effect. 
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• A direct effect (the initial drop causing the ripple effects) is the change in purchases due to a 
change in economic activity. 

 
• An indirect effect is the change in the purchases of suppliers to those economic activities 

directly experiencing change.  
 
• An induced effect is the change in consumer spending that is generated by changes in labor 

income within the region as a result of the direct and indirect effects of the economic activity. 
Including households as a column and row in the interindustry matrix allows this effect to be 
captured. 

 
Extending the Leontief Inverse to pertain not only to relationships between total production and 
final demand of the economy but also to changes in each permits its multipliers to be applied to 
many types of economic impacts. Indeed, in impact analysis the Leontief Inverse lends itself to 
the drop-in-a-pond analogy discussed earlier. This is because the Leontief Inverse multiplied by 
a change in final demand can be estimated by a power series. That is, 
 

(I-A)-1 Δy = Δy + A Δy + A(A Δy) + A(A(A Δy)) + A(A(A(A Δy))) + ... 
 

Assuming that Δy—the change in final demand—is the “drop in the pond,” then succeeding 
terms are the ripples. Each “ripple” term is calculated as the previous “pond disturbance” 
multiplied by the direct requirements matrix. Thus, since each element in the direct requirements 
matrix is less than one, each ripple term is smaller than its predecessor. Indeed, it has been 
shown that after calculating about seven of these ripple terms that the power series 
approximation of impacts very closely estimates those produced by the Leontief Inverse directly. 
 
In impacts analysis practice, Δy is a single column of expenditures with the same number of 
elements as there are rows or columns in the direct or technical requirements matrix. This set of 
elements is called an impact vector. This term is used because it is the vector of numbers that is 
used to estimate the economic impacts of the investment.  
 
There are two types of changes in investments, and consequently economic impacts, generally 
associated with projects—one-time impacts and recurring impacts. One-time impacts are 
impacts that are attributable to an expenditure that occurs once over a limited period of time. For 
example, the impacts resulting from the construction of a project are one-time impacts. 
Recurring impacts are impacts that continue permanently as a result of new or expanded ongoing 
expenditures. The ongoing operation of a new train station, for example, generates recurring 
impacts to the economy. Examples of changes in economic activity are investments in the 
preservation of old homes, tourist expenditures, or the expenditures required to run a historical 
site. Such activities are considered changes in final demand and can be either positive or 
negative. When the activity is not made in an industry, it is generally not well represented by the 
input-output model. Nonetheless, the activity can be represented by a special set of elements that 
are similar to a column of the transactions matrix. This set of elements is called an economic 
disturbance or impact vector. The latter term is used because it is the vector of numbers that is 
used to estimate the impacts. In this study, the impact vector is estimated by multiplying one or 
more economic translators by a dollar figure that represents an investment in one or more 
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projects. The term translator is derived from the fact that such a vector translates a dollar amount 
of an activity into its constituent purchases by industry. 
 
One example of an industry multiplier is shown in Figure 4. In this example, the activity is the 
preservation of a historic home. The direct impact component consists of purchases made 
specifically for the construction project from the producing industries. The indirect impact 
component consists of expenditures made by producing industries to support the purchases made 
for this project. Finally, the induced impact component focuses on the expenditures made by 
workers involved in the activity on-site and in the supplying industries. 

 
Figure 4 

Components of the Multiplier for the 
Historic Rehabilitation of a Single-Family Residence 

 
Direct Impact Indirect Impact Induced Impact 

Excavation/Construction 
Labor 
Concrete 
Wood 
Bricks 
Equipment 
Finance and Insurance 

Production Labor 
Steel Fabrication 
Concrete Mixing 
Factory and Office 
Expenses 
Equipment 
Components 
 

Expenditures by wage 
earners  
on-site and in the supplying 
industries for food, clothing, 
durable goods, 
entertainment 
 

 
Regional Input-Output Analysis 
 
Because of data limitations, regional input-output analysis has some considerations beyond those 
for the nation. The main considerations concern the depiction of regional technology and the 
adjustment of the technology to account for interregional trade by industry. 
 
In the regional setting, local technology matrices are not readily available. An accurate region-
specific technology matrix requires a survey of a representative sample of organizations for each 
industry to be depicted in the model. Such surveys are extremely expensive.2 Because of the 
expense, regional analysts have tended to use national technology as a surrogate for regional 
technology. This substitution does not affect the accuracy of the model as long as local industry 
technology does not vary widely from the nation’s average.3  
 
Even when local technology varies widely from the nation’s average for one or more industries, 
model accuracy may not be affected much. This is because interregional trade may mitigate the 
error that would be induced by the technology. That is, in estimating economic impacts via a 
                                                 
2The most recent statewide survey-based model was developed for the State of Kansas in 1986 and cost on the order of $60,000 
(in 1990 dollars). The development of this model, however, leaned heavily on work done in 1965 for the same state. In addition 
the model was aggregated to the 35-sector level, making it inappropriate for many possible applications since the industries in the 
model do not represent the very detailed sectors that are generally analyzed. 
3Only recently have researchers studied the validity of this assumption. They have found that large urban areas may have 
technology in some manufacturing industries that differs in a statistically significant way from the national average. As will be 
discussed in a subsequent paragraph, such differences may be unimportant after accounting for trade patterns. 
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regional input-output model, national technology must be regionalized by a vector of regional 
purchase coefficients,4 r, in the following manner: 
 
 

(I-rA)-1 r⋅Δy 
or 

r⋅Δy + rA (r⋅Δy) + rA(rA (r⋅Δy)) + rA(rA(rA (r⋅Δy))) + ... 
 

where the vector-matrix product rA is an estimate of the region’s direct requirements matrix. 
Thus, if national technology coefficients—which vary widely from their local equivalents—are 
multiplied by small RPCs, the error transferred to the direct requirements matrices will be 
relatively small. Indeed, since most manufacturing industries have small RPCs and since 
technology differences tend to arise due to substitution in the use of manufactured goods, 
technology differences have generally been found to be minor source error in economic impact 
measurement. Instead, RPCs and their measurement error due to industry aggregation have been 
the focus of research on regional input-output model accuracy. 
 
A Comparison of Three Major Regional Economic Impact Models 
 
In the United States there are three major vendors of regional input-output models. They are U.S. 
Bureau of Economic Analysis’s (BEA) RIMS II multipliers, Minnesota IMPLAN Group Inc.’s 
(MIG) IMPLAN Pro model, and CUPR’s own REcon™ I–O model. CUPR has had the privilege 
of using them all. (R/Econ™ I–O builds from the PC I–O model produced by the Regional 
Science Research Corporation’s (RSRC).) 
 
Although the three systems have important similarities, there are also significant differences that 
should be considered before deciding which system to use in a particular study. This document 
compares the features of the three systems. Further discussion can be found in Brucker, Hastings, 
and Latham’s article in the Summer 1987 issue of The Review of Regional Studies entitled 
“Regional Input-Output Analysis: A Comparison of Five Ready-Made Model Systems.” Since 
that date, CUPR and MIG have added a significant number of new features to PC I–O (now, 
R/Econ™ I–O) and IMPLAN, respectively. 
 
Model Accuracy 
 
RIMS II, IMPLAN, and RECON™ I–O all employ input-output (I–O) models for estimating 
impacts. All three regionalized the U.S. national I–O technology coefficients table at the highest 
levels of disaggregation (more than 500 industries). Since aggregation of sectors has been shown 
to be an important source of error in the calculation of impact multipliers, the retention of 
maximum industrial detail in these regional systems is a positive feature that they share. The 
systems diverge in their regionalization approaches, however. The difference is in the manner 
that they estimate regional purchase coefficients (RPCs), which are used to regionalize the 

                                                 
4A regional purchase coefficient (RPC) for an industry is the proportion of the region’s demand for a good or service that is 
fulfilled by local production. Thus, each industry’s RPC varies between zero (0) and one (1), with one implying that all local 
demand is fulfilled by local suppliers. As a general rule, agriculture, mining, and manufacturing industries tend to have low 
RPCs, and both service and construction industries tend to have high RPCs. 
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technology matrix. An RPC is the proportion of the region’s demand for a good or service that is 
fulfilled by the region’s own producers rather than by imports from producers in other areas. 
Thus, it expresses the proportion of the purchases of the good or service that do not leak out of 
the region, but rather feed back to its economy, with corresponding multiplier effects. Thus, the 
accuracy of the RPC is crucial to the accuracy of a regional I–O model, since the regional 
multiplier effects of a sector vary directly with its RPC. 
 
The techniques for estimating the RPCs used by CUPR and MIG in their models are theoretically 
more appealing than the location quotient (LQ) approach used in RIMS II. This is because the 
former two allow for crosshauling of a good or service among regions and the latter does not. 
Since crosshauling of the same general class of goods or services among regions is quite 
common, the CUPR-MIG approach should provide better estimates of regional imports and 
exports. Statistical results reported in Stevens, Treyz, and Lahr (1989) confirm that LQ methods 
tend to overestimate RPCs. By extension, inaccurate RPCs may lead to inaccurately estimated 
impact estimates.  
 
Further, the estimating equation used by CUPR to produce RPCs should be more accurate than 
that used by MIG. The difference between the two approaches is that MIG estimates RPCs at a 
more aggregated level (two-digit SICs, or about 86 industries) and applies them at a desegregate 
level (over 500 industries). CUPR both estimates and applies the RPCs at the most detailed 
industry level. The application of aggregate RPCs can induce as much as 50 percent error in 
impact estimates (Lahr and Stevens,  2002). 
 
Although both RECON™ I–O and IMPLAN use an RPC-estimating technique that is 
theoretically sound and update it using the most recent economic data, some practitioners 
question their accuracy. The reasons for doing so are three-fold. First, the observations currently 
used to estimate their implemented RPCs are based on 20-years old trade relationships—the 
Commodity Transportation Survey (CTS) from the 1977 Census of Transportation. Second, the 
CTS observations are at the state level. Therefore, RPC’s estimated for substate areas are 
extrapolated. Hence, there is the potential that RPCs for counties and metropolitan areas are not 
as accurate as might be expected. Third, the observed CTS RPCs are only for shipments of 
goods. The interstate provision of services is unmeasured by the CTS. IMPLAN replies on 
relationships from the 1977 U.S. Multiregional Input-Output Model that are not clearly 
documented. RECON™ I–O relies on the same econometric relationships that it does for 
manufacturing industries but employs expert judgment to construct weight/value ratios (a critical 
variable in the RPC-estimating equation) for the nonmanufacturing industries. 
 
The fact that BEA creates the RIMS II multipliers gives it the advantage of being constructed 
from the full set of the most recent regional earnings data available. BEA is the main federal 
government purveyor of employment and earnings data by detailed industry. It therefore has 
access to the fully disclosed and disaggregated versions of these data. The other two model 
systems rely on older data from County Business Patterns and Bureau of Labor Statistic’s ES202 
forms, which have been “improved” by filling-in for any industries that have disclosure problems 
(this occurs when three or fewer firms exist in an industry or a region). 
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Model Flexibility 
 
For the typical user, the most apparent differences among the three modeling systems are the 
level of flexibility they enable and the type of results that they yield. R/Econ™ I–O allows the 
user to make changes in individual cells of the 515-by-515 technology matrix as well as in the 11 
515-sector vectors of region-specific data that are used to produce the regionalized model. The 
11 sectors are: output, demand, employment per unit output, labor income per unit output, total 
value added per unit of output, taxes per unit of output (state and local), nontax value added per 
unit output, administrative and auxiliary output per unit output, household consumption per unit 
of labor income, and the RPCs. Te PC I–O model tends to be simple to use. Its User’s Guide is 
straightforward and concise, providing instruction about the proper implementation of the model 
as well as the interpretation of the model’s results. 
 
The software for IMPLAN Pro is Windows-based, and its User’s Guide is more formalized.  Of 
the three modeling systems, it is the most user-friendly. The Windows orientation has enabled 
MIG to provide many more options in IMPLAN without increasing the complexity of use. Like 
R/Econ™ I–O, IMPLAN’s regional data on RPCs, output, labor compensation, industry average 
margins, and employment can be revised. It does not have complete information on tax revenues 
other than those from indirect business taxes (excise and sales taxes), and those cannot be 
altered. Also like R/Econ™, IMPLAN allows users to modify the cells of the 538-by-538 
technology matrix. It also permits the user to change and apply price deflators so that dollar 
figures can be updated from the default year, which may be as many as four years prior to the 
current year. The plethora of options, which are advantageous to the advanced user, can be 
extremely confusing to the novice. Although default values are provided for most of the options, 
the accompanying documentation does not clearly point out which items should get the most 
attention. Further, the calculations needed to make any requisite changes can be more complex 
than those needed for the R/Econ™ I–O model. Much of the documentation for the model dwells 
on technical issues regarding the guts of the model. For example, while one can aggregate the 
538-sector impacts to the one- and two-digit SIC level, the current documentation does not 
discuss that possibility. Instead, the user is advised by the Users Guide to produce an aggregate 
model to achieve this end. Such a model, as was discussed earlier, is likely to be error ridden. 
 
For a region, RIMS II typically delivers a set of 38-by-471 tables of multipliers for output, 
earnings, and employment; supplementary multipliers for taxes are available at additional cost. 
Although the model’s documentation is generally excellent, use of RIMS II alone will not 
provide proper estimates of a region’s economic impacts from a change in regional demand. This 
is because no RPC estimates are supplied with the model. For example, in order to estimate the 
impacts of rehabilitation, one not only needs to be able to convert the engineering cost estimates 
into demands for labor as well as for materials and services by industry, but must also be able to 
estimate the percentage of the labor income, materials, and services which will be provided by 
the region’s households and industries (the RPCs for the demanded goods and services). In most 
cases, such percentages are difficult to ascertain; however, they are provided in the R/Econ™  
I–O and IMPLAN models with simple triggering of an option. Further, it is impossible to change 
any of the model’s parameters if superior data are known. This model ought not to be used for 
evaluating any project or event where superior data are available or where the evaluation is for a 
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change in regional demand (a construction project or an event) as opposed to a change in 
regional supply (the operation of a new establishment). 
 
Model Results 
 
Detailed total economic impacts for about 500 industries can be calculated for jobs, labor 
income, and output from R/Econ™ I–O and IMPLAN only. These two modeling systems can 
also provide total impacts as well as impacts at the one- and two-digit industry levels. RIMS II 
provides total impacts and impacts on only 38 industries for these same three measures. Only the 
manual for R/Econ™ I–O warns about the problems of interpreting and comparing multipliers 
and any measures of output, also known as the value of shipments. 
 
As an alternative to the conventional measures and their multipliers, R/Econ™ I–O and 
IMPLAN provide results on a measure known as “value added.” It is the region’s contribution to 
the nation’s gross domestic product (GDP) and consists of labor income, nonmonetary labor 
compensation, proprietors’ income, profit-type income, dividends, interest, rents, capital 
consumption allowances, and taxes paid. It is, thus, the region’s production of wealth and is the 
single best economic measure of the total economic impacts of an economic disturbance. 
 
In addition to impacts in terms of jobs, employee compensation, output, and value added, 
IMPLAN provides information on impacts in terms of personal income, proprietor income, other 
property-type income, and indirect business taxes. R/Econ™ I–O breaks out impacts into taxes 
collected by the local, state, and federal governments. It also provides the jobs impacts in terms 
of either about 90 or 400 occupations at the users request. It goes a step further by also providing 
a return-on-investment-type multiplier measure, which compares the total impacts on all of the 
main measures to the total original expenditure that caused the impacts. Although these latter can 
be readily calculated by the user using results of the other two modeling systems, they are rarely 
used in impact analysis despite their obvious value. 
 
In terms of the format of the results, both R/Econ™ I–O and IMPLAN are flexible. On request, 
they print the results directly or into a file (Excel® 4.0, Lotus 123®, Word® 6.0, tab delimited, or 
ASCII text). It can also permit previewing of the results on the computer’s monitor. Both now 
offer the option of printing out the job impacts in either or both levels of occupational detail.  
 
RSRC Equation 
 
The equation currently used by RSRC in estimating RPCs is reported in Treyz and Stevens 
(1985). In this paper, the authors show that they estimated the RPC from the 1977 CTS data by 
estimating the demands for an industry’s production of goods or services that are fulfilled by 
local suppliers (LS) as  

 
LS = De(-1/x)  
 
and where for a given industry  
 
x = k Z1a1Z2a2 Pj Zjaj and D is its total local demand.  
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Since for a given industry RPC = LS/D then  
 
ln{-1/[ln (lnLS/ lnD)]} = ln k + a1 lnZ1 + a2 lnZ2 + Sj ajlnZj  
 
which was the equation that was estimated for each industry.  
 

 
This odd nonlinear form not only yielded high correlations between the estimated and actual 
values of the RPCs, it also assured that the RPC value ranges strictly between 0 and 1. The 
results of the empirical implementation of this equation are shown in Treyz and Stevens (1985, 
table 1). The table shows that total local industry demand (Z1), the supply/demand ratio (Z2), the 
weight/value ratio of the good (Z3), the region’s size in square miles (Z4), and the region’s 
average establishment size in terms of employees for the industry compared to the nation’s (Z5) 
are the variables that influence the value of the RPC across all regions and industries. The latter 
of these maintain the least leverage on RPC values.  
 
Because the CTS data are at the state level only, it is important for the purposes of this study that 
the local industry demand, the supply/demand ratio, and the region’s size in square miles are 
included in the equation. They allow the equation to extrapolate the estimation of RPCs for areas 
smaller than states. It should also be noted here that the CTS data only cover manufactured 
goods. Thus, although calculated effectively making them equal to unity via the above equation, 
RPC estimates for services drop on the weight/value ratios. A very high weight/value ratio like 
this forces the industry to meet this demand through local production. Hence, it is no surprise 
that a region’s RPC for this sector is often very high (0.89). Similarly, hotels and motels tend to 
be used by visitors from outside the area. Thus, a weight/value ratio on the order of that for 
industry production would be expected. Hence, an RPC for this sector is often about 0.25.  
 
The accuracy of CUPR’s estimating approach is exemplified best by this last example. Ordinary 
location quotient approaches would show hotel and motel services serving local residents. 
Similarly, IMPLAN RPCs are built from data that combine this industry with eating and drinking 
establishments (among others). The results of such an aggregation process is an RPC that 
represents neither industry (a value of about 0.50) but which is applied to both. In the end, not 
only is the CUPR’s RPC-estimating approach the most sound, but it is also widely acknowledged 
by researchers in the field as being state of the art.  
 
Advantages and Limitations of Input-Output Analysis 
 
Input-output modeling is one of the most accepted means for estimating economic impacts. This 
is because it provides a concise and accurate means for articulating the interrelationships among 
industries. The models can be quite detailed. For example, the current U.S. model currently has 
more than 500 industries representing many six-digit North American Industrial Classification 
System (NAICS) codes. The CUPR’s model used in this study has 517 sectors. Further, the 
industry detail of input-output models provides not only a consistent and systematic approach but 
also more accurately assesses multiplier effects of changes in economic activity. Research has 
shown that results from more aggregated economic models can have as much as 50 percent error 
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inherent in them. Such large errors are generally attributed to poor estimation of regional trade 
flows resulting from the aggregation process. 
 
Input-output models also can be set up to capture the flows among economic regions. For 
example, the model used in this study can calculate impacts for a county as well as the total New 
Jersey state economy. 
 
The limitations of input-output modeling should also be recognized. The approach makes several 
key assumptions. First, the input-output model approach assumes that there are no economies of 
scale to production in an industry; that is, the proportion of inputs used in an industry’s 
production process does not change regardless of the level of production. This assumption will 
not work if the technology matrix depicts an economy of a recessional economy (e.g., 1982) and 
the analyst is attempting to model activity in a peak economic year (e.g., 1989). In a recession 
year, the labor-to-output ratio tends to be excessive because firms are generally reluctant to lay 
off workers when they believe an economic turnaround is about to occur.  
 
A less-restrictive assumption of the input-output approach is that technology is not permitted to 
change over time. It is less restrictive because the technology matrix in the United States is 
updated frequently and, in general, production technology does not radically change over short 
periods.  
 
Finally, the technical coefficients used in most regional models are based on the assumption that 
production processes are spatially invariant and are well represented by the nation’s average 
technology. In a region as large and diverse as New Jersey, this assumption is likely to hold true. 

 
 
 
 
  
 

 


